Heating/Cooling Design, Equipment, and Installation

2021 VRC/VECC Code Guide

Resources for code-compliant heating and cooling design and installation:

For residential heating/cooling, the Air Conditioning Contractors of America Association, Inc. – commonly known as ACCA – publishes Manual J, Manual S, and Manual D, which contain protocols and formulas to guide load calculation, equipment selection, and duct design respectively. Virginia Residential Code has required the use of all three of these manuals – or approved substitutes – since the 2009 edition.

The following pages provide a variety of resources for designers, installers, and code officials to help ensure that calculations associated with a particular home are accurate and complete – and that the ensuing installation is completed in compliance with code requirements.

- Brochures on Manual J, S, and D from ACCA, the Air Conditioning Contractors of America
- "Understanding and Using the HVAC Design Review Form" and a sample HVAC Design Review Form both from ACCA
- Viridiant's "Understanding Select Fields on the Residential Plans Examiner Review Form for HVAC System Design"
- Viridiant's "TECH TIPS: HVAC Installation"

Additional Resources:

- <u>https://www.acca.org/viewdocument/hvac-brochures-for-code-officials</u>
- <u>https://www.acca.org/viewdocument/residential-system-design-review-forms-examples</u>
- <u>https://www.acca.org/viewdocument/hvac-quality-installation-specification-english-1</u>

2021 VRC/VECC Code References:

N1103.7 (R403.7) (M1401.3) Equipment and appliance sizing. Heating and cooling equipment and appliances shall be sized in accordance with ACCA Manual S or other approved sizing methodologies based on building loads calculated in accordance with ACCA Manual J or other approved heating and cooling calculation methodologies.

Exception: Heating and cooling equipment and appliance sizing shall not be limited to the capacities determined in accordance with Manual S or other approved sizing methodologies where any of the following conditions apply:

 The specified equipment or appliance utilizes multistage technology or variable refrigerant flow technology and the loads calculated in accordance with the approved heating and cooling methodology fall within the range of the manufacturer's published capacities for that equipment or appliance.

- 2. The specified equipment or appliance manufacturer's published capacities cannot satisfy both the total and sensible heat gains calculated in accordance with the approved heating and cooling methodology and the next larger standard size unit is specified.
- 3. The specified equipment or appliance is the lowest capacity unit available from the specified manufacturer.

M1411.6.1 Refrigerant line insulation protection. Refrigerant piping insulation shall be protected in accordance with Section N1103.4.1.

N1103.4 (R403.4) Mechanical system piping insulation. Mechanical system piping capable of carrying fluids greater than 105°F (41°C) or less than 55°F (13°C) shall be insulated to an R-value of not less than R-3.

N1103.4.1 (R403.4.1) Protection of piping insulation. Piping insulation exposed to weather shall be protected from damage, including that caused by sunlight, moisture, equipment maintenance and wind. The protection shall provide shielding from solar radiation that can cause degradation of the material. Adhesive tape shall be prohibited.

M1601.1 Duct design. Duct systems serving heating, cooling and ventilation equipment shall be installed in accordance with the provisions of this section and ACCA Manual D, the appliance manufacturer's installation instructions or other approved methods.

M1601.6 Independent garage HVAC systems. Furnaces and air-handling systems that supply air to living spaces shall not supply air to or return air from a garage.

M1602.1 Outdoor air openings. Outdoor intake openings shall be located in accordance with Section R303.5.1. Opening protection shall be in accordance with Section R303.6

M1602.2 Return air openings. Return air openings for heating, ventilation and air-conditioning systems shall comply with all of the following:

- 1. Openings shall not be located less than 10 feet (3048 mm) measured in any direction from an open combustion chamber or draft hood of another appliance located in the same room or space.
- 2. The amount of return air taken from any room or space shall be not greater than the flow rate of supply air delivered to such room or space.
- 3. Return and transfer openings shall be sized in accordance with the appliance or equipment manufacturer's installation instructions, Manual D or the design of the registered design professional.
- Return air shall not be taken from a closet, bathroom, toilet room, kitchen, garage, mechanical room, boiler room, furnace room or unconditioned attic.
 Exceptions:
 - 1. Taking return air from a kitchen is not prohibited where such return air openings serve the kitchen only, and are located not less than 10 feet (3048 mm) from the cooking appliances.
 - 2. Dedicated forced-air systems serving only the garage shall not be prohibited from obtaining return air from the garage.

- 5. For other than dedicated HVAC systems, return air shall not be taken from indoor swimming pool enclosures and associated deck areas except where the air in such spaces is dehumidified.
- 6. Taking return air from an unconditioned crawl space shall not be accomplished through a direct connection to the return side of a forced-air furnace. Transfer openings in the crawl space enclosure shall not be prohibited.
- Return air from one dwelling unit shall not be discharged into another dwelling unit. Exception: The return air within a two-family dwelling constructed without fire separations in accordance with Exception 3 of Section R302.3 shall be permitted to discharge into either dwelling unit.

Definitions:

CLIMATE ZONE. A geographical region based on climatic criteria as specified in this code.

CONDITIONED FLOOR AREA. The horizontal projection of the floors associated with the conditioned space.

CONDITIONED SPACE. An area, room or space that is enclosed within the building thermal envelope and that is directly or indirectly heated or cooled. Spaces are indirectly heated or cooled where they communicate through openings with conditioned spaces, where they are separated from conditioned spaces by uninsulated walls, floors or ceilings, or where they contain uninsulated ducts, piping or other sources of heating or cooling.

DUCT. A tube or conduit utilized for conveying air. The air passages of self-contained systems are not to be construed as air ducts.

DUCT SYSTEM. A continuous passageway for the transmission of air that, in addition to ducts, includes duct fittings, dampers, plenums, fans and accessory air-handling equipment and appliances.

THERMAL DISTRIBUTION EFFICIENCY (TDE). The resistance to changes in air heat as air is conveyed through a distance of air duct. TDE is a heat loss calculation evaluating the difference in the heat of the air between the air duct inlet and outlet caused by differences in temperatures between the air in the duct and the duct material. TDE is expressed as a percent difference between the inlet and outlet heat in the duct.

THERMAL ISOLATION. Physical and space conditioning separation from conditioned spaces. The conditioned spaces shall be controlled as separate zones for heating and cooling or conditioned by separate equipment.

THERMOSTAT. An automatic control device used to maintain temperature at a fixed or adjustable setpoint.

VENTILATION. The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space.

VENTILATION AIR. That portion of supply air that comes from outside (outdoors) plus any recirculated air that has been treated to maintain the desired quality of air within a designated space.

2800 Shirlington Road Suite 300 Arlington, VA 22206 Web Address: www.acca.org

The Air Conditioning Contractors of America (ACCA) is dedicated to excellence in the heating, ventilation, air conditioning and refrigeration (HVACR) industry. As the largest HVACR contractor organization, ACCA is committed to helping its members succeed. Some of the fundamental ways in which our efforts are seen, are in the technical resources and industry standards, that guarantee quality HVACR design, installation and maintenance.

Sponsored by the ACCA Code Committee

The ACCA Code Committee was formed to address code issues and in particular, to advise and assist ACCA in beneficially representing the contractors in the code processes that affect the HVACR industry. This information has been provided for entities, seeking to verify that load calculations for an HVACR application have been correctly performed. For more information, contact: Surumi Hudacsko

Phone: 703-824-8847 Fax: 703-575-9147

WHY ARE HEAT LOSS AND HEAT GAIN CALCULATIONS IMPORTANT

Achieving occupant satisfaction is the principal goal of any HVAC design. Primary factors impacting occupant satisfaction include: filtration, temperature and humidity control, air motion in the room, adequate ventilation, interior zoning needs and energy efficient operation. Occupant satisfaction is maximized when the heating and cooling system and equipment are the correct type and size and the air distribution system is properly designed and installed.

For residential applications, ACCA's Manual J, Eighth Edition (MJ8TM) is the only procedure recognized by the American National Standards Institute (ANSI) and specifically required by residential building codes. Methods not based on actual construction details, nor founded on relevant physical laws and engineering principles, are unlikely to result in correct equipment sizing.

PROBLEMS WITH OVERSIZED EQUIPMENT

Oversized equipment results in marginal part load temperature control. While the temperature control at the thermostat may be satisfactory, equipment cycling may cause noticeable temperature swings in other rooms and larger temperature differences between rooms. Oversized equipment may cause degraded humidity control and increase the potential for mold growth, allergic reactions and respiratory problems. In these unfavorable conditions, occupants may experience additional discomfort and dissatisfaction. Other negative effects are higher installed costs, increased operating expenses, and increased maintenance costs. Furthermore, oversized equipment generally requires larger ducts, poses additional requirements on the power grid and may lead to more service calls.

REASONS FOR OVERSIZED EQUIPMENT

Three main reasons for oversized equipment are: (1) a guess is made on the load; (2) mistakes are made in the load calculation; (3) the equipment is selected for either unusual/extreme conditions such as abnormal temperatures or unusual occupancy loads (i.e. gatherings/parties). Other reasons include the use of inappropriate and inadequate "rules of thumb" such as '500ft²/ton', '400CFM/ton', or 'total cooling capacity = $1.3 \times \text{sensible cooling capacity}'$. Furthermore, seemingly trivial mistakes such as ignoring building efficiency upgrades and assuming that the original design and installation are correct, all contribute towards inappropriate equipment sizing.

MANUAL J® VERIFICATION

While it is not practical to verify every aspect of a submitted MJ8 calculation, it is a good practice to review key elements that indicate general integrity of the calculations i.e. the contractor has made a good faith effort to provide reasonably accurate loads.

ITEMS TO VERIFY

The key load elements, grouped in roughly decreasing levels of impact on the overall contribution to the loads, are:

It is also worth noting some unusual items that also contribute to the load. These include:

- Hot Tubs
- Whirlpool Tubs
- Three-season Porches

A NOTE ON UNDERSTANDING THE DESIGN PROCESS

Manual J allows contractors to perform a load calculation on a residential building/home. Apart from the load calculation being performed, the ducts must be sized and the correct size equipment must be selected. ANSI-recognized ACCA Manual D® for duct sizing and ACCA Manual S® for residential equipment selection provide guidance here.

#	Key Item	Снеск	QUESTIONS TO ASK	CIRCL	E ANS	WER*	ł
			Is the indoor design temperature for <i>Heating</i> : per Local Code OR 70°F (21°C) at 30% RH?	YES	NO		ł
1	DESIGN TEMPERATURES	✓ Indoor Design Temperatures	Is the indoor design temperature for <i>Cooling</i> : per Local Code OR 75°F (24°C) at 50% RH? [or 55% for humid climate, 45% for dry climate?]	YES	NO		•
		✓ Outdoor Design Temperatures	Is the outdoor design temperature per Table 1 of MJ8 or Local Code?	YES	NO		
		✓ U-values and SHGC values	Are the SHGC and U-values reasonable for the window types and frame constructions? (see Table 2 of MJ8)	YES	NO		
		✓ Shading Adjustments	Have window shading (curtains, drapes, insect screens, tinting, etc.) adjustments been made?	YES	NO		-
2	WINDOWS & GLASS DOORS	✓ Overhang Adjustments	Have roof overhang adjustments been made?	YES	NO		:
		✓ Total Area	Is the total area for the windows & glass doors roughly equal to the area shown on the drawing plans?	YES	NO		
		✓ Exposure Directions	Do the exposure directions [North (N), North-East (NE), etc.] appear correct?	YES	NO		
		✓ U-values and SHGC values	Are the SHGC and U-values appropriate for the skylight types and frame constructions? (see Table 2 of MJ8)	YES	NO	N/A	ł
2	Skylights	✓ Shading Adjustments	Have adjustments been made for drapes, tinting and reflective coatings?	YES	NO	N/A	1
3		✓ Total Area	Is the total area for the skylights roughly equal to the area shown on the drawing plans?	YES	NO	N/A	-
		✓ Exposure Directions	Do the exposure directions [North (N), North-East (NE), etc.] appear correct?	YES	NO	N/A	ł
4	DOORS WOOD, METAL	✓ None					-
-	WALLS	✓ Insulation	Are correct wall insulation R-values taken into account when the wall loads are calculated?	YES	NO		=
Э	ABOVE GRADE, BELOW GRADE	✓ Total Area	Is the total area for the walls equal to the area shown on the drawing plans?	YES	NO		-
		✓ Insulation	Is correct ceiling insulation R-value taken into account when the ceiling load is calculated?	YES	NO	N/A	ł
6	Commence	✓ Radiant Barrier	If applicable, does the load calculation take credit for a radiant barrier?	YES	NO	N/A	ł
0	CEILINGS	\checkmark Roof color and material	Is correct roof color and material taken into account when the ceiling load is calculated?	YES	NO		
		✓ Total Area	Is the total area for the ceilings equal to the area shown on the drawing plans?	YES	NO		Č.
7	FLOORS	✓ Insulation	Is the floor insulation and type of construction representative of what is built/planned?	YES	NO		
0		✓ Envelope Tightness	Is the listed envelope tightness (tight, semi-tight, average, semi-loose, loose) appropriate?	YES	NO		
8	INFILTRATION	\checkmark Above grade volume	Is the total above grade volume equal to what is shown on the drawing plans?	YES	NO		1
		✓ Appliances	Are the appliance gains 1200 Btuh, 2400 Btuh or a value recommended by MJ8?	YES	NO		1
9	INTERNAL GAINS		Is Maximum Number of Occupants = Number of Bedrooms + 1?	YES	NO		
-		✓ Occupants	 Is Btuh (sensible) = 230 x Number of Occupants? Is Btuh (latent) = 200 x Number of Occupants? 	YES	NO		
10	Droma	✓ Duct Location	If located in an unconditioned space, are the ducts insulated (appropriate R-value)?	YES	NO	N/A	
10	DUCTS	✓ Duct Tightness	Is the duct tightness category 'average sealed' or higher (i.e. notably sealed, extremely sealed)?	YES	NO		·
		✓ Intermittent Fans	Are intermittent bathroom and kitchen fans <u>excluded</u> from the infiltration calculations?	YES	NO	N/A	
11	VENTILATION	✓ Continuous Exhaust Fans	Are dedicated exhaust fans (continuous) <u>included</u> in the calculations?	YES	NO	N/A	*
		✓ Heat Recovery Equipment	Are the heat recovery equipment and/or a ventilating dehumidifier included in the calculations (if applicable)?	YES	NO	N/A	1

Sponsored by the ACCA Codes Committee

2800 Shirlington Road Suite 300 Arlington, VA 22206

Phone: 703-575-4477 Fax: 703-575-9147

ACCA (Air Conditioning Contractors of America) is dedicated to excellence in the HVACR industry. As the largest HVACR contractor organization, ACCA is committed to helping its members succeed. Some of the fundamental ways in which our efforts are seen, are in the technical resources and industry standards, that guarantee quality HVACR design, installation and maintenance.

The ACCA Codes Committee was formed to address code issues and in particular, to advise and assist ACCA in beneficially representing the contractors in the code processes that affect the HVAC industry. This document has been written for code officials, seeking to verify that HVAC equipment has been selected in order to meet the home's load requirements.

For a more detailed analysis on the design process visit www.acca.org for Bob's House

To order ACCA Manual S 888-290-2220

Includes Equipment Selection Checklist & Example

Verifying ACCA Manual S[®] Procedures

Why is proper equipment selection important?

Achieving occupant satisfaction is the principal goal of any HVAC design. Occupant satisfaction is maximized when the heating and cooling equipment are the correct type and size to meet the capacity requirements from the Manual J load calculation. For residential equipment selections, ACCA's Manual S®, is the only procedure recognized by the American National Standards Institute (ANSI). If the Manual J load calculation is done then the next step is to select the equipment that will deliver the necessary heating and cooling.

What problems come from the wrong size equipment?

Undersized equipment will not meet the customer's comfort requirements at the design specifications.

Oversized equipment will create other problems:

- Degraded humidity control in the summer.
- Occupants may suffer the effects of an increased potential for mold growth. These same conditions also may contribute to asthma and other respiratory conditions.
- The temperature may feel right at the thermostat but the temperature in other rooms will suffer from the oversized equipment going through short operation cycles. Short cycles can cause temperature swings as the equipment over-conditions, stops, then over-conditions, etc...
- Hot and cold spots between rooms because the thermostat is satisfied but the room is not.
- Oversized equipment generally requires larger ducts, increased electrical circuit sizing and larger refrigeration tubing. These cause higher installed costs and increased operating expenses.
- The equipment starts and stops more frequently, this causes excessive wear and can increase maintenance costs / service calls.

In these unfavorable conditions occupants will experience discomfort and dissatisfaction.

What are some reasons for oversized equipment?

Manufacturers take great care in measuring and testing how well their equipment performs at different operating conditions.

When contractors use this data to select the equipment they will meet the heating and cooling needs of their customers.

Two main reasons for oversized equipment are either that: (1) a guess was made on the equipment's capacity at the design conditions or (2) mistakes were made in the selection process.

		Equip	oment Selection Checklist
#	Key Item	Verify	Verification Questions
		The design condi- tions fall within specifications.	Do the design conditions fall within the minimum standards for this region as found in Manual J8 Table 1A or 1B?
1	Design Con- ditions	The information from the Manual J load calculation was transferred accurate- ly.	Was the Total Heat Gain / Loss information used to evaluate equip- ment candidates?
	OEM's	The equipment man- ufacturer's perfor- mance parameters	Does the manufacturer's performance parameters match the design parameters used to calculate the home's heat load (i.e., outdoor dry- bulb, indoor dry-bulb, and indoor wet-bulb)?
2	2 Performance Data	match the design parameters used to calculate the heat load.	If the performance data parameters are more than 5% greater or less than the design parameters then did the contractor interpolate the equipment manufacturer's performance parameters to match the de- sign parameters used to calculate the heat load?
		Estimated Cooling –	Was the Sensible Heat Ratio calculated? (Sensible Load / Total OLoad)?
		perature Difference	Was the SHR used to find the proper air flow?
			Is the total heating capacity of the selected equipment $\leq 140\%$ of the designed total heating load? (If not reduce equipment size)
3	Equipment Performance	Equipment selected satisfies Total Btus	Is the total cooling capacity of the selected equipment $\leq 115\%$ of the designed total cooling load ? (If not reduce equipment size)
		(for cooling the Sen- sible and Latent load)	Does the "Sensible" and/or "Latent" capacities of the selected equip- ment meet the load's requirements?
			If a heat pump in a very cold climate (heating is primary concern) does the total cooling capacity of the selected equipment exceed 125% of the designed total cooling load?
4	Auxiliary Heat	Heat Pump Balance Point	Does the electric auxiliary heat provide the necessary BTUs to makeup difference in capacity from the heat pump's balance point to the design load conditions?

	Equip	ment Selection	using an Example	Checklist			
	Design		Application	Data: Equipm	ent Capacity		
Winte Outdoor °F:	er Design Co 27°F	nditions From Manual J8 Table 1A or 1B	A furnace was selected for comparing "heating only" design and performance. Other types of equipment may be used.				
Indoor °F:	70°F	Manual J8 §3-6 defaults to 70°F	Furnace Model Num- ber:	FU600300	Fictitious furnace		
Total Calculated Heat Loss	B 50,981Btu/h	Determined by Manual J8 load calculation	Output BTUH:	52,000Btu/h	Furnace Btu/h Out- put: (≤ 140% of cal- culated loss)		
Summ	er Design Co	onditions	A heat pump was sel	ected for compa	ring cooling and		
Outdoor°F:	85°F	From Manual J8 Table 1A or 1B	heating design and p	erformance. Ot	her types of		
Indoor °F:	75°F	Manual J8 §3-6 defaults to 75°F	equipment may be us	sed.			
Entering Wet Bulb (EWB):	63°F	Manual J8 §3-6 defaults to 63°F EWB (≈ 75°F / 50% RH)	Outdoor Unit Model Number:	HP-030	Fictitious heat pump		
Total Heat Gain	27,543Btu/h	Determined by	Total Cooling Capacity $(\leq 115\%)$	28,400Btu/h	These capacities are from manufacturer's		
Sensible Heat Gain	23,321B†u/h Manual J8		Sensible Cooling Capacity (≈ Sensible Gain)	21,600Btu/h	the DESIGN CONDI- TIONS: 85°F ODT,		
Latent Heat Gain	4,222Btu/h	load calculation	Latent Cooling Capacity (≈ Latent Gain)	6,800Btu/h	1,000CFM, and 63°F EWB		
Sensible Heat Ratio (SHR)	85% 🔘	See formula below	Indoor Unit Model Number:	AH-030	Fictitious air handler		
Design Air Flow) 1,116 CFM	The " <i>TARGET</i> " airflow, we look for equipment that operates in this range (⁺ /- 10%), on <u>medium</u> fan speed	Indoor Blower CFM (CFM in manufactur- er's performance data at rated capacity- medium fan speed):	1,000	The actual equipment rated airflow, (medium fan speed optimal) should fall within target CFM,(⁺ / - 15%)		
SHR = Sensible Total Hea Sensible Hea versus Temperature De SHR Re	e Heat at Gain 85 ut Ratio sign Value 8 commended	$\frac{23,321 \text{Btu/h}}{27,543 \text{Btu/h}}$ $5\% \approx 19^{\circ} \text{ Design Temp}$ $FM = \frac{\text{Sensible Heat Gain}}{25\%}$	Btuh Difference be- tween Heat Pump Bal- ance Point and Total Heat Loss	(H) 30,281 Btu/h	This heat pump can only produce 20,700Btu/h at design conditions. More capacity is required. (Air Conditioners do not have a balance point.)		
Below 0.80 0.80 - 0.85 * Above 0.85	$\frac{21^{\circ}F}{19^{\circ}F}$ $\frac{17^{\circ}F}{17^{\circ}F}$	Design Temp x 1.1 116 CFM= $\frac{23,321 \text{ Btu/h}}{19 \text{ x } 1.1}$	Auxiliary Heat (Circle): Electric Gas Oil	10 KW 🕚	In this example the auxiliary heat is elec- tric, the formula for electric heat is KW= Btu/h \div 3.413		
From Manua	ll J8 Tables	From Manual J8	Load Calculation	From Equip. Pe	erformance Data		

Friction Rate Worksheet	A From manufactu	turer's da-	,	Table of U	Useful Air Di	istribution	System D	Design Inform	mation
External Static Pressure (ESP) = 0.70 IWC CI Step 2) Device Pressure Losses (DPL)	FM= <u>1200 CFM</u> ta—equipment Cl capacity	CFM at rated	Zone:	One	Design Fr tion Rat	$\frac{1}{2}$ 0.1	0 Type of	System:	Trunk and Branch
Direct expansion refrigerant coil	B From Manufact er Performance I	cture's Blow- Data corre-	onstruction Material	Supply Air Trunk	Met	al /	Supply Air Branch		Flex
Filter 0.18 IWC Humidifier	sponding to the CF	FM (#1) Co.	onstruction Material	Return Air Trunk	Duct b	oard	Return Air Branch		Flex
Supply outlet.0.03 IWCReturn grille.0.03 IWC	C From Manufact	cturer's Ir	-Value of	Supply	R	6 /	Return		R6
Balancing dampers 0.03 IWC Other device 0.50 IWC	D Total Effectiv	ta F	Room	Design CFM	Supply Duct Size(s)	Supply Gri and Ve	lle(s) Size, clocity	Return Duct Size(s)	Return Grille Size and Velocity
Step 3) Available Static Pressure (ASP)	\approx loss from duct	t lengths, Bedi	room 1	7 ¹⁵⁰	7 ^{1 - 8"}	1 - 14x6,	600fpm	(9")- 12"	14x14, 300fpm
$ASP = ESP - DPL (Step 1 - Step 2) \qquad 0.20 \text{ IWC}$	fittings	nd other Walk	k-in-Closet	15	1 - 4"	1 - 8x4, 4	450fpm	7	
Supply side TEL + Return side TEL = $200 \text{ ft TEL} \checkmark$		Bedi	room 2	100	2 - 6"	2 - 10x4,	600fpm	(7") - 8"	14x8, 275fpm
Step 5) Friction Rate Design Value [FR= (ASPx100)÷TEL] 0.10 IWC fro	m chart below	e is found	room 3	100	1 - 7"	1 - 12x4,	600fpm	(7") -8"	14x8, 275fpm
	to 0.20 and up the si	side scale Livin	ing Room	275	2 - 8"	2 - 14x6,	575fpm	(16") 18"	24x24, 350fpm
	to 200 feet the inters	rsecting Den	1	125	1 - 8"	1 - 14x6,	600fpm		T T
	design friction rate.	. This ex- Dini	ing	125	2 - 6	2 - 10x4,	600fpm		
	ample, 0.10, is within centable friction rate	hin the ac- Foye	er	80	1 16"	1 - 10x4,	600fpm <		(I) Grille and
				Č	G The Fric-	$1 (H)_{\pi}$			register sizes
	The Design C	CFM for each room	n is based or	n the	tion Rate	on t	he return du he friction ra	ct size is based te and then	should be select-
Y 50 0.1 0.15 0.2 0.25 0.3 0.3	5 larger of the Cooling	ig or Heating CFM.	Those hea	at and	1s used to determine the	may b	e adjusted to	a larger size to	velocities are
	cool CFM come from pacity based on each	the allocation of the room's heating ar	nd cooling i	needs.	duct size.	meet	recommended	d velocity.	acceptable.
Recommended Velocity (FPM) (N	Manual D, Table 3-1)				2-6	2 - 10x4,	625fpm	ACCA does no	ot recommend installing
Supply	Return	Bath	h1	- 65	1-6"	1 - 10x4,	600fpm	return ducts in	kitchens, baths, laundry,
Recommended Maximum	Recommended Maximum	Bath	n2	40	1-5"	1 - 8x4, !	500fpm	of utility rooms	
Rigid Flex Rigid Flex	Rigid Flex Rigid Flex	Bath	n 3						
Irunk Ducts /00 600 900 /00 Description (00	600 600 700 700	< тот	TALS	1200					
Branch Ducts 600 600 900 700	400 400 700 700	Note	es:						
Supply Outlet Face Velocity Size for Throw 700		Туре	es of Supply	System:	Frunk and Branch	, Perimeter Lo	oop, Radial		
Return Grille Face Velocity	500 6	Cons	struction Ma	aterials:	Sheet metal, Fiber	rglass Ductbo	ard, Rigid Rou	nd Fiberglass, F	lexible Vinyl Duct,
Filter Grille Face Velocity	300				Fiberglass Duct L	iner w/ Facing	g, Flexible Me	tal Duct	

Verifying ACCA Manual D® Procedures

Why are duct design calculations important?

Achieving occupant satisfaction is the principal goal of any HVAC design. For residential air duct designs ACCA's Manual D is the procedure recognized by the American National Standards Institute (ANSI) and specifically required by residential building codes. Air is the first word in air conditioning. If the network of ducts carrying the air is not properly designed then the health and safety of the occupant are at risk, the equipment could fail more quickly, the energy costs could rise, and occupant comfort might be sacrificed.

What problems come from wrong sized ducts?

In order for home owners to be comfortable a duct system must be designed to carry the right amount of air, at the right speed, into the right room. If the ducts are the wrong size then the wrong amount of air will enter the room and may cause:

- The room to be too warm or too cool
- The air to be too drafty and disturb people while they sleep, eat, read, etc...
- The air to be too noisy and drown out conversations, TV or radio programs, etc...
- The air to be too slow the conditioned air will not circulate or mix well in the room.
- The fan to work harder, possibly fail sooner, and use more energy to move air
- The furnace or air conditioner safety devices to stop equipment operation
- Pressure differentials that may increase energy costs by pushing out conditioned air or drawing in unwanted air

Fax 703575-4449

ACCA's Manual D Residential Duct Design Checklist Key Item Check **Ouestions to Ask** Information Does each room have a heating and cooling CFM assigned? CFM for each from load cal-(Proportioned air supply based on Manual J8 room-by-room room load calculations) culation According to the manufacturer's data will the fan produce the Manufacturer's specified airflow at the specified static pressure? (Manufact-**External Static** urers produce a graph that relates air flow and static pressure) (B) Pressure (ESP) Manufacturer's Data Did the contractor submit the manufacturer's data specifying the Accessory and pressure drop for any item in the air stream like a high efficiendevice pressure cy filter or a hot water coil? losses (C) Are supply outlets, return grilles, and balancing dampers listed at a standard 0.03? **Available Static** Pressure (ASP) Are the pressure drops listed for other external devices: filters, coils, etc...? (C) Manual D Fric-Did the contractor calculate the TEL by adding the longest Suption ply Total Effective Length and the longest Return Total Effec-**Total Effective** tive Length? (Total Effective Length = the length of the duct Worksheet Length (TEL) from outlet back to unit + the effective length for all fittings, i.e., elbows, reducers, take-offs, etc...) Did the contractor use the Friction Rate Chart or calculate Fric-Friction Rate design value tion Rate [FR = ASP x 100 / TEL] (E)Did the contractor size the ducts based on the design CFM, fric-Branch Lead tion rate, and the duct material used? \mathbf{G} Size Did the contractor select a supply trunk duct large enough to Trunk Size accommodate all the supply branch leads? Air Distribution Did the contractor select the return trunk duct large enough to **Return Trunk** System Design meet the lower return air velocity requirements? $\mathbf{\hat{H}}$ **Duct Velocities** Verify each occupied room has an open air path (ACCA recommends a ducted return for each bedroom, den, Return air path library, etc...) Does the air velocity across the register or grille exceed the Register and Recommended Velocity Chart? (Grille manufacturers list the Grille Face Ve-Manual T face velocity for grilles and registers at a given CFM, e.g., 12 x locities 4 - Model XYZ, 500fpm at 120cfm

UNDERSTANDING AND USING THE HVAC DESIGN REVIEW FORM

Each of the 32 points of requested information is discussed, and references to the supporting manual are given to substantiate the requirement.

TABLE OF CONTENTS				
Section I: HVAC Load Calculation				
Section II: HVAC Equipment Selection				
Section III: HVAC Duct Distribution System Design				
Manual J Edition Checklist	Error! Bookmark not defined.			

County, Town, Mun	cipality, Jurisdiction - Header Information
Contractor Mechanical License #	Applicable Attachments Manual J1 Form and Worksheet A: Yes No OEM performance data (heating, cooling, blower): Yes No Duct distribution sketch Yes No IRC Table R301.2 (climatic & geographic design criteria) Yes No
Building Plan #	
Home Address (Street or Lot #, Block, Subdivision)	Design Conditions (IRCM1401.3) Cooling Temp 5 00 ing Temp 5 00 ing Temp 6
Latitude° N Cooling Indoor S <u>Winter Design Conditions</u> Coincide Outdoor Winter Temp 2 Indoor Winter Temp 3°F Heating Temp Diff°F 10 The heat log	Image: Temp Diff •F Sensible Heat Gain (7) Btu Immer Design RH • Latent Heat Gain (8) Btu Int Wet Bulb Temp • • Total Heat Gain (9) Btu Int Wet Bulb Temp • • • F Total Heat Gain (9) • Int Wet Bulb Temp • • • • • • • Int Wet Bulb Temp • • • • • • • • • Int Wet Bulb Temp •
I he heat los	G / gain was calculated in accordance with ACCA Manual J? Y N (IRCM1401.3)
Heating Equipment Furnace Boiler Aux. Heat w/Heat Pump Single Stage Multi-Stage Modulating	Cooling Equipment 15 □ Air Conditioner □ Heat Pump □ Air-to-Air □ Geothermal Open □ Geothermal Closed □ Sincle Speed □ Warishle Speed
Model 12 Output 13 Aux. Heat 14 Btu Size Limit Load: Capacity	Model 16 Btu Secure Btu Sizing Value Btu % Latent Btu Size Limit % % Total 19 Btu Load: Capacity %
20 Size Factor is withing Manual S Size Limit? $\Box Y \Box N$	② Size Factor is within Manual S Size □Y □N Limit?
HVAC DUCT DISTRIBUTION DESIGN Design Airflow 22 External Static Pressure (ESP) 23 Component Pressure Loss (CPL) 24 Available Static Pressure (ASP) 25 Ducts are sized per Manual D? IVC	Supply Duct 26 (27) Ft 30 Duct Materials Used: Return Duct 27 Ft Trunk Duct: Duct Board Sheet metal Fective Length (TEL) 28 Ft Flex Lined Sheet metal Other Rate 29 00) / TEL=Friction Rate Image: Comparison of the flex Flex Lined Sheet metal Other N 32 32 Image: Comparison of the flex
I declare the load calculation, equipment selection, and duct system claims made on these forms may be subject to review and verification	h design were rigorously performed based on the building plan listed above and understand the
Contractor's Printed Name	Date
Contractor's Signature	

Section M1401.3, M1601.1, are R301.2 are copyrighted materials excerpted from the 2024 International Residential Code, Copyright © 2024. International Code Council, Inc. All rights reserved. Reproduced with permission. www.ICCSAFE.org.

UNDERSTANDING AND USING THE HVAC DESIGN REVIEW FORM

These instructions use standard forms and worksheets found in ACCA Manual J and ACCA Manual D. The Authority Having Jurisdiction (AHJ) shall have the discretion to accept information generated by software companies that are approved by ACCA. Such companies must demonstrate to ACCA that their software complies with the procedures in Manual J and Manual D. The current list of ACCA approved software vendors can be accessed by going to the link shown below:

Approved Software - ACCA

SECTION I: HVAC LOAD CALCULATION:

The purpose of this portion of the form is to ensure that the objective, prescribed, and representative values from the buildings plans/drawings were used in the Manual J load calculation.

- 1. The ACCA Manual J1 Form accounts for all component loads applicable to the structure's physical construction details, or the plans for its final condition. If acceptable to the authority having jurisdiction (AHJ), an ACCA-approved software J1 report can be used in lieu of the ACCA J1 Form.
- 2. Record the location of the dwelling by selecting the nearest city or town that has climatic conditions as close to those locations listed in Table 1A or 1B from Manual J8 §A5-1. Record the elevation, latitude, and the altitude correction factor using Table 10A from Manual J or established criteria determined by the jurisdiction. See Figure 1 below as an example.

Table 1A Outdoor Design Conditions for the United States

Location	Elevation	Latitude	Winter		20	Sun	nmer		v.
	Feet	Degrees North	Heating 99% Dry Bulb	Cooling 1% Dry Bulb	Coincident Wet Bulb	Design Grains 55% RH	Design Grains 50% RH	Design Grains 45% RH	Daily Range (DR)
Nebraska Beatrice	1323	40	-2	95	74	28	35	41	м

3. <u>Winter Outdoor Temp</u>: Ensure this value comes from MJ8 Table 1A or 1B. Manual J8 §A5-1: "Use of this set of conditions is mandatory, unless a code or regulation specifies another set of conditions." See Figure 1 above, the Winter OD Temperature is -2°F. The same information can also be determined from Table 301.2, Climatic and Geographic Design Criteria, in the International Residential Code – (corrected 2024 edition), as shown below.

CROUND		WIND	DESIGN		CEICHIC	SUBJECT T	O DAMAG	EFROM		E BADDIED	AIR MEAN	
SNOW LOAD ^o	Speed ^d (mph)	Topographic effects ^k	Special wind region ¹	Windborne debris zone ^m	DESIGN CATEGORY	Weathering ⁸	Frost line depth ^b	Termite ^c	UNDERLAYMENT REQUIRED ^h	FLOOD HAZARDS ³	FREEZING INDEX ¹	ANNUAL TEMP ¹
-	-		227.2	-	-	-				(, _ ,)	-	S
					MANU	AL J DESIGN CR	ITERIA			6		
Elevation			Altitude correction factor ^e	Coincident wet bulb	Indoor winter design relative humidity	Indoor wint ter	er design d nperature	iry-buib	Outdoor winter des temperati	ign dry-bulb Ire	Heating ter differ	mperature ence
				344	-							3
Latitude			Daily range	Summer design gains	Indoor summer design relative humidity	Indoor summ ter	ner design nperature	dry-bulb	Outdoor summer de temperati	sign dry-bulb Ire	Cooling ter differ	mperature ence
							-					÷

TABLE R301.2 CLIMATIC AND GEOGRAPHIC DESIGN CRITERIA

- 4. <u>Winter Indoor temperature:</u> 70°F. Manual J8 §A5-3: "Heating and cooling load estimates shall be based on the indoor design conditions listed below. Use of this set of conditions is mandatory, unless superseded by a code, regulation, or documented health requirement."
- 5. <u>Total Heat Loss</u>: This value is used to select the heating system, a code official may wish to verify the total represents the sum of the individual loads.

Section M1401.3, M1601.1, are R301.2 are copyrighted materials excerpted from the 2024 International Residential Code, Copyright © 2024. International Code Council, Inc. All rights reserved. Reproduced with permission. www.ICCSAFE.org.

- 6. <u>Summer Outdoor Temp:</u>
- 7. <u>Summer Indoor temperature:</u>
- 8. <u>Sensible Heat Gain</u>: This value represents the amount of dry heat the cooling system must remove.
- 9. Latent Heat Gain: This value represents the amount of moist heat the cooling system must remove.
- 10. <u>Total Heat Gain</u>: This value is used to size cooling systems; the total cooling capacity shall equal the sensible and latent heat gains.
- 11. Confirm whether the heat loss / heat gain was calculated in accordance with ACCA Manual J. See link above for approved software.

SECTION II: HVAC EQUIPMENT SELECTION:

The purpose of this portion of the form is to ensure the equipment selected meets the heating or cooling requirements calculated in Section I for the home. Ensure the HVAC designer used the manufacturer's performance data, and did not exceed the limits prescribed by the recognized national standard.

Manual J load calculations should not be used to size equipment, only Manual S procedures or ACCA-approved Manual S software. In addition, AHRI certificates or AHRI performance data are not be used in lieu of Manual S OEM performance data and size tolerances.

Refer to the equipment sizing requirements (2021 IRC, Section M1401.3) from Manual S as shown below:

		Overview	of Size Limi	ts for Reside	ential HVAC	Equipment								
Equipment ^a	Attributes of	Issue	Ν	Ainimum (deficie	ent) and Maximu	m(excessive) Ca	apacity Factors.	d						
Rated by the	Local Climate Notes b, c	Cooling	Single-Speed Compressor			Multi- and Variable-Speed Compressor								
AHRI		Capacity (Btuh)	Air-Air	GLHP ^e	GWHP ^f	Air-Air	GLHP ^e	GWHP ^f						
Air-Air and	Mild Winter	Total	0.90 t	o 1.15	1.25	0.90 to 1.20 _{mul}	ti or 1.30 _{variable}	i or 1.30 _{variable} 1.30 _m or 1.35 _v						
Water-Air Cooling-Only	<u>or</u> Has a Latent	Latent	Minimum = 1	.00. Preferred m	aximum = 1.50	may exceed 1.5	if no reasonable	e alternative).						
& Heat Pump	Cooling Load	Sensible	Mi	nimum = 0.90. N	Aaximum determ	nined by total an	d latent capacitie	es.						
Air-Air and	Cold Winter	Total	Maximum ca	pacity = <i>Manua</i>	<i>I J</i> total cooling I	oad plus 15,000	Btuh; Minimum	factor = 0.90						
Water-Air Heat Pump	<u>and</u> No Latent	Latent		Latent ca	pacity for summ	er cooling is not	an issue.							
Only	Cooling load	Sensible		Not an issue (de	etermined by the	limits for total cooling capacity).								
e) GLHP: Grou f) GWHP: Grou	per Section 2 of t e, 1.15 excess ca und loop heat pur ound water heat p	ne Eignin Editi pacity = 115% np (water in bu ump (ground w	on of <i>Manual J</i> , excess capacity iried closed pipe vater from well, p	version 2.0 or ia y. e loop). oond, lake, river,	etc., flows thoug	h equipment an	d is discarded).	 calculation (per Section 2 of the Eighth Edition of <i>Manual J</i>, version 2.0 or later). Multiply a size factor by 100 to convert to a percentage. For example, 1.15 excess capacity = 115% excess capacity. e) GLHP: Ground loop heat pump (water in buried closed pipe loop). 						
Electric	Furnaces;	Load (Btuh)	Maxim	um KW										
Heating Coils	Heat Pump	Heat Pump supplement: ≤ 15,000				Minimum Ca	pacity Factor	Maximum Ca	pacity Factor					
	supplement.	≤ 15,000	5	.0	Minimum Ca Satisfy	pacity Factor / Load	Maximum Ca See Maxi	pacity Factor						
	supplement; emergency	≤ 15,000 > 15,000	5 See Min	.0 and Max	Minimum Ca Satisfy 0.	pacity Factor / Load 95	Maximum Ca See Maxi 1.	pacity Factor mum KW 75						
Minimum and r by 100 to conv	supplement; emergency maximum capacity vert to a percentag	≤ 15,000 > 15,000 y factors opera ge.	5 See Min te on the heating	.0 and Max g load produced	Minimum Ca Satisf 0. by an accurate A	pacity Factor / Load 95 fanual J load ca	Maximum Ca See Maxi 1. Iculation. Multipl	pacity Factor mum KW 75 y a size factor						
Minimum and r by 100 to conv Natural Gas,	maximum capacity emergency maximum capacity rert to a percentag	≤ 15,000 > 15,000 y factors opera ge.	5 See Min te on the heating Minir	.0 and Max g load produced num Output Cap	Minimum Ca Satisfy 0. by an accurate A pacity	pacity Factor / Load 95 fanual J load ca Maxin	Maximum Ca See Maxi 1. Iculation. Multiply mum Output Cap	pacity Factor mum KW 75 y a size factor pacity						
Minimum and r by 100 to conv Natural Gas, Oil, Propane Furnaces	maximum capacity rert to a percentage Duty Heating-only	≤ 15,000 > 15,000 y factors opera ge.	5 See Min te on the heating Minir	.0 and Max g load produced num Output Cap 1 00	Minimum Ca Satisfy 0. by an accurate A pacity	pacity Factor / Load 95 fanual J load ca Maxii	Maximum Ca See Maxi 1. Iculation. Multiply mum Output Cap	pacity Factor mum KW 75 y a size factor pacity						
Minimum and r by 100 to conv Natural Gas, Oil, Propane Furnaces	neart rump supplement; emergency naximum capacity rert to a percentag Duty Heating-only Heating-Cooling	≤ 15,000 > 15,000 y factors opera ge.	5 See Min te on the heating Minir	.0 and Max g load produced num Output Cap 1.00	Minimum Ca Satisf 0. by an accurate A pacity	pacity Factor / Load 95 fanual J load ca Maxir	Maximum Ca See Maxi 1. Iculation. Multiply mum Output Cap 1.40	pacity Factor mum KW 75 y a size factor pacity						

Minimum and maximum capacity factors operate on the heating load produced by an accurate *Manual J* load calculation. Multiply a size factor by 100 to convert to a percentage. For heating-cooling duty, blower performance must be compatible with the cooling equipment.

Electric, and Duty	Minimum Output Capacity	Maximum Output Capacity
--------------------	-------------------------	-------------------------

Fossil Fuel Water Boilers	Gravity or forced convection terminals in the space, water coil in duct or air-handler.	1.00		1.40		
Minimum and r by 100 to conv	naximum capacity factors opera ert to a percentage. Refer to OB	ate on the heating load produced l EM guidance when a boiler is use	by an accurate M d for potable wa	lanual J load ca ter heat, or snov	lculation. Multiply w melting.	/ a size factor
Hot Water	Duty		Minimun	n Factor	Maximur	n Factor
Coils	Gravity or forced convection t	erminals in the space.	4.0	20	Two-position	Throttling
	Water coil in duct or air-handl	er.	1.0	00	1.25	1.50
Minimum and maximum capacity factors operate on the heating load p by 100 to convert to a percentage. Two-position= open-close valve; TI			oy an accurate M Full modulating	lanual J load ca 2-way or 3-way	lculation. Multiply valve.	/ a size factor
Electric and F	ossil Fuel Water Heaters	The space heating load is the <i>Manual J</i> load. The total load is the space heating load plus the potable water load. Refer to OEM guidance for selection and sizing guidance.				
Dual Fuel Sys	tems	Heat pump sizing rules apply, heating equipment sizing rules apply, see Section N2-11.				
Ancillary Deh	umidification	See Section N2-12. May allow +15,000 Btuh excess cooling capacity for cold winter climate.				
Humidifiers (S	Section N2-13)	Minimum capacity humidification load, excess capacity dependent on smallest size available.				
AHAM Cooling	g and Heat Pump Equipment	See Section N2-14 for sizing rules.				
Direct Evapor	ative Cooling Equipment	See Section N2-15 for sizing rules.				

Heating Equipment Data

Figure 1: Manual S Sizing Limitations

<u>11. Equipment Type:</u> A description of the type of heat source used: furnace, boiler. If a heat pump is used list the fan coil/air handler and supplemental heater size.

<u>12. Model:</u> The model of heater that will be installed.

<u>13. Heating output capacity:</u> The amount of maximum OUTPUT heating capacity available from the heater shall be equal to, but not exceed 140% of the heat loss (value from item #14); in Figure 7 the output capacity is 64,000 Btu/h. Manual S §2-2 states, "...the output capacity of the furnace or boiler must be greater than the design heating load, but no more than 40 percent larger than the design heating load." Manual S further states in §2-3, "Always use the output capacity value to size the heating equipment." Also see Section N2.4 of Manual S for Multi-stage furnaces. To obtain a copy of the 2014 edition of Manual S click on the link shown below. Online Store - ACCA

14. Auxiliary heating output capacity: The auxiliary heat source that supplements the heat pump. Manual S §4-8 states that the supplemental heat is based on, "...the difference between the winter design heating load and the capacity the heat pump will have when it operates at the winter design temperature." Therefore, when auxiliary heat is used, it shall be based on the difference between the homes heat loss and the heat pump's capacity. Supplemental heat may also be required by code for circumstances when the heat pump has failed, for example if the compressor in the heat pump fails, then the emergency heat would provide some heating. Manual S states in §4-8 that emergency heat sizing shall be in compliance with local codes.

Cooling Equipment Data

15. Equipment Type: A description of the cooling equipment that will be installed: air conditioner, heat pump, etc.

16. Model: The model of cooling equipment that will be installed. In Figure 11, the model is an AC -030.

<u>17. Sensible cooling capacity:</u> The sensible cooling capacity of the equipment should satisfy the sensible cooling requirement (line #15). If the sensible capacity is insufficient, Manual S §3-10 (Step 4) states that the HVAC system designer is permitted to, "Add half of the *excess* latent capacity to the sensible capacity..."

<u>18. Latent cooling capacity:</u> Latent capacity is rarely listed in the manufacturers' performance data. However, it can be derived by subtracting the sensible from the total cooling capacities. The latent cooling capacity is crucial to proper health and safety. When the cooling equipment lacks the latent capacity, moisture related problems arise: affects to framing, growth of harmful compounds, and organisms.

<u>19. Total cooling capacity:</u> The amount of maximum cooling capacity available from the equipment shall not exceed 115% of the heat gain. Manual S §3-4 states,:

- a. "Cooling equipment shall be sized so that the total cooling capacity does not exceed the total cooling load by more than 15 percent."
- b. "...heat pump equipment (air source or water source) is installed in a warm or moderate climate, the total cooling capacity shall not exceed the total cooling load by more than 15 percent."

c. "...heat pump equipment (air source or water source) is installed in a cold climate (where heating costs are a primary concern), the total cooling capacity can exceed the total cooling load by 25 percent."

Some cooling equipment is available with two speeds or stages, other cooling equipment can scale its capacity to meet peak and part-load conditions. These types of cooling equipment, generally, are produced in limited sizes. Due to the sizing limitations, in these circumstances, the designer should choose the smallest equipment that will meet the total cooling load. For example, this home has a cooling load of 27,000. Figure 13 shows the available units, from these, the 3 ton A/C unit should be chosen because it is the smallest unit that can meet the total cooling load.

20. Is the load capacity within the size limit? (heating)

The heating load (heat loss) is determined by the Manual J heat loss calculation. Per ACCA Manual S, furnace size should stay within the specified limits of Table 2.4 below. For heat pumps with electric resistance heat, refer to Table 2.3 in Manual S as shown below.

Si	ize Limits for F	ossil Fuel Furn	aces	
Output Capacity	Single Stage	Multi Stage	Modulate Burner	
for Heating- Only	Sizing value to	Sizing value to	Sizing value to	
-	1.4 x sizing value	1.4 x sizing value at full capacity	1.4 x sizing value at full capacity	
Preferred ³	Sizing value to	Sizing value to	Sizing value to	
Capacity for Heating and Cooling	1.4 x sizing value	1.4 x sizing value at full capacity	1.4 x sizing value at full capacity	
Maximum ⁴	Sizing value to	Sizing value to	Sizing value to	
Output Capacity for Heating and Cooling	2.0 x sizing value	2.0 x sizing value at full capacity	2.0 x sizing value at full capacity	
Zone Damper Systems	Zone damper sy capacity as poss to the <i>Manual J</i>	stems should have ible when full capa block load for the	e as little excess city is compared space served.	
a) Applies to b) Sizing valu served by	natural gas, propa e = MJ8 block loac the equipment.	ine, and oil furnac d (heating Btuh) foi	es. r the space	
c) The 2.0 lim less, but a incompatib staged or heating co baseboard	it applies when th need to use this I ble with the applica modulating burner il in a cooling equ I heat, or radiant h	e sizing value is 2 imit indicates that tion. Consider a fu c. Consider a heat ipment cabinet or neat.	5,000 Btuh or a furnace is rnace that has a pump, or a duct, or	
d) The excess	s output capacity fa	actor shall range fr	om 1.0 to 1.4	
e) The excess larger furn power for	s output capacity fa ace is the only wa cooling.	actor may be as highly to obtain the ne	gh as 2.0 when a cessary blower	
This option the perform that excee	ion is exercised aft nance of common ding the 1.4 limit i	er the practitioner ly available produ s necessary and c	has investigated cts, and found defensible.	
 Consider Other so Consider a cabinet or 	r a turnace that ha lutions may be mo a heat pump, or a h duct, or baseboard	is a staged or moo re compatible with neating coil in a coo l heat, or radiant he	the application. bling equipment eat, for example.	
f) Minimum c	apacity = Sizing v	alue	•	

Table N2-4

Size Limits for Electric Heating Coils					
Heat Pump Supplemental Heat A balance point diagram determines the maximum amount of electric coil heat required (sizing value) when refrigeration cycle heat is active and functioning properly.					
Sizing Value Max KW Max Factor Min Factor					
15,000 Btuh or less 5.0 na na					
More than 15,000 Btuh	na	1.75	0.95		
Heat Pump Emergency Heat When refrigeration cycle heat is not available, the sizing value for emergency heat is 85 percent of the design heating load value, or use the sizing value for supplemental heat when the supplemental heat value is larger than the emergency heat value.					
Sizing Value	Max KW	Max Factor	Min Factor		
15,000 Btuh or less	5.0	na	na		
More than 15,000 Btuh	na	1.75	0.95		
 g) Electric furnace h) Electric coil in air handler cabinet, duct plenum, or duct run The design value for the heating load determines the sizing value for electric coil heat 					
Sizing Value	Max KW	Max Factor	Min Factor		
15,000 Btuh or less	5.0	na	na		
More than 15,000 Btuh	na	1.75	0.95		
 Zone Damper Systems Zone damper systems shall have as little excess heating capacity as possible for any non-emergency operating condition. Stage heat pump supplemental heat. Stage electric coils that are the only source of heat. 					
 Maximum and minimum capacity factors are applied to the sizing value. Electric coils that have a total capacity of 10 KW or more should be staged. Use 2-1/2 to 7-1/2 KW increments, depending on what is possible for the available coil circuiting options (5 KW steps are the desired goal). When staging is available, the maximum number of active stages should be enough to satisfy the minimum heating requirement (95% of the sizing value). Keep additional stages off line. 					

Table N2-3

21. Is the load capacity within the size limit? (cooling)

The total cooling load is determined by the ACCA Manual J heat gain calculation. The summer heat gain is made up of the sensible load (outdoor temperature vs indoor temperature) and the latent load (humidity). Cooling equipment capacity should not exceed the total load more than the values listed in ACCA Manual S (see Figure 6).

SECTION III: HVAC DUCT DISTRIBUTION SYSTEM DESIGN:

The purpose of this section is to ensure the air moving values and capabilities of the equipment selected in Section II are sufficient to meet the resistance offered by additional components and the duct distribution system. Ensure these values are accurately transcribed from the Manual D Friction Rate Worksheet. Shown below is an example of such a worksheet from Manual D. The following link contains a list of those who have ACCA approved software for Manual D. <u>Approved Software - ACCA</u>

<u>22. Design airflow:</u> The volume of air delivered by a piece of equipment at a given fan speed, voltage, and amount of pressure (the larger of Heating or Cooling CFM, item 22. When selecting a blower assembly, the design airflow will be the higher of the two, 1,117 CFM.

23. Static Pressure: The design static pressure from the air moving equipment's blower performance table.

The static pressure is the amount of pressure in inches water column (IWC) the blower can "push" against and still deliver the stated volume of air. For example, in Figure 14, on Med-Low fan speed the FR 80-14 furnace can push 1,117 CFM (interpolated¹ between 1,140 CFM and 1,095 CFM) against a constant or "static" pressure of 0.75 (interpolated between 0.7 and 0.8). This value should not be confused with the Friction Rate which will be discussed later.

¹ Interpolation is the process of determining a value between two known, prescribed values.

<u>24. Component Pressure Losses (CPL):</u> The total resistance or pressure created by accessories like filters, refrigeration coils, grilles, registers, dampers, and others. For example, in Figure 23 the component pressure loss is 0.40.

<u>25. Available Static Pressure (ASP)</u>: The difference between the external static pressure (item 31) and the component pressure losses (item 24). This number represents the amount of resistance (or pressure) the ducts can create and still allow the fan to deliver the correct airflow. This is a major factor in determining the friction rate which will be used to size the ducts. For example, in Figure 16 the ASP is 0.35.

<u>26. Longest SUPPLY duct:</u> The "effective" length of the longest supply (conditioned air) duct run. Different duct fittings create different amounts of resistance, the resistance of a 90° elbow may be one foot long, but that elbow may offer as much resistance as thirty feet of straight pipe. A duct runout may look short, but because of elbows and other fittings it may actually have a long effective length. For example, in Figure 17 the supply side total effective length (TEL) is 278.

<u>27. Longest RETURN duct:</u> The same properties apply to return ducts (that bring room air back to the furnace, fan coil, or air handler). For example, in Figure 17 the return side TEL is 110.

<u>28. Total Effective Length (TEL):</u> The sum total of the supply and return effective lengths. In Figure 17 the total effective length is 388.

<u>29. Friction Rate $(ASP \times 100) \div TEL = FR$ </u>]: The value used to determine the size of duct required to carry a certain volume of air. It is important to ensure the FR is greater than 0.06 and less than 0.18 to control air velocity. If the FR is outside this boundary the contractor should justify their design. In Figure 18, the friction rate is 0.09. The FR is one value used to size the ducts; the other factor in duct sizing is the duct material.

<u>30. Duct Materials Used:</u> For Trunk ducts ensure the planned materials are listed: Metal pipe, fiberglass duct board, flexible duct, or other. Use a friction chart or duct calculator (Figure 20) to verify the size of the ducts considering the friction rate and the duct material. Do not use a "sheet metal" duct calculator to size flexible ducts.

31. Branch duct: See item 378.

32. Ducts are sized per Manual D?

See the above requirements from Manual D plus the duct distribution sketch and Figures 19 and 20.

<u>Examine Duct Distribution Sketch:</u> Verify duct sizes with a duct calculator like the one in Figure 20, and ensure all isolated rooms (like bedrooms) have a low resistance air path (cross over duct / transfer grille) or a ducted return. Ensure the duct calculator used has the appropriate scale for the duct material used.

Figure 2: Example Duct Sketch

Figure 3: ACCA Duct Calculator

Contractor's Signature

Residential Plans Examiner Review Form For HVAC System Design (Loads, Equipment, Ducts)

Form RPER 2.0

County, Town, Municipality, Jurisdiction - Header Information

Contractor	<u>Applicable</u> Manual J1 I	Attachments Form and Worksheet A: Yes No
Mechanical License #	OEM perfor	rmance data (heating, cooling, blower): Yes No
	IRC Table F	R301.2 (climatic & geographic design criteria) Yes No
Building Plan #		
Home Address (Street or Lot #, Block, Subdivis	ion)	
HVAC LOAD CALCULATION		(IRC M1401.3)
Manual J Design Criteria and Loads		
<u>Location</u>	Summer Design Conditions	Manual J Loads
Elevationft	Outdoor Cooling Temp	°F Total Heat LossBtu
Altitude Correction Factor ACF	Indoor Cooling Temp	°F
Latitude° N	Cooling Temp Diff	°F Sensible Heat GainBtu
	Indoor Summer Design RH	% Latent Heat GainBtu
Winter Design Conditions	Coincident Wet Bulb Temp	°F Total Heat GainBtu
Outdoor Winter Temp°F		
Indoor Winter Temp°F		
	ie heat loss / gain was calculated	In accordance with ACCA Manual J? Y N
HVAC EQUIPMENT SELECTION		(IRC M1401.3)
Heating Equipment	<u>Cooling Eq</u>	<u>uipment</u>
Furnace Boiler Electric	Heat 🗌 Air Cond	litioner 🗌 Heat Pump
🗌 Single Stage 🔄 Multi-Stage 🔄 Modulat	ing Air-to-Air [Geothermal Open Loop 🗌 Geothermal Closed Loop
	Single Spe	eed 🗌 Multi-Stage 🔄 Variable Speed
Model	Model	
Output Btu Sizing Value	Btu Sensible	Btu Sizing Value Btu
Supplemental Btu Size Limit	% Latent	B _{tu} Size Limit %
Heat Load: Capaci	ty % Total	_{Btu} Load: Capacity %
Size Factor is within Manual S Size Limit?	Y N Size Factor	is within Manual S Size Limit? 🛛 Y 🗌 N
HVAC DUCT DISTRIBUTION DESIGN		(IRC M1601.1)
Design Airflow	Longest Supply Duct	Duct Materials Used
External Static Pressure (ESP)	Longest Beturn Duct	
Component Pressure Loss (CPL)	Total Effective Length (TEL)	-
		Ft
		$ \qquad \qquad$
ESP - CPL = ASP	(ASP x 100) / TEL = Friction Rate	
		Ducts are sized per Manual D? 🛛 Y 🗌 N
I declare the load calculation, equipment se	lection, and duct system design	were rigorously performed based on the building
plan listed above and understand the claims	made on these forms may be su	ubject to review and verification.
		Date

This page left intentionally blank.

Understanding Select Fields on the Residential Plans Examiner Review Form for HVAC System Design

Residential HVAC

Tips for Enforcing the 2021 Virginia Code

Residential Plans Examiner Review Form For HVAC System Design (Loads, Equipment, Ducts)

County, Town, Municipality, Jurisdiction - Header Information

Form RPER 2.0

The **Residential Plans Examiner Review** Form for HVAC System Design is a standardized template provided by Air Conditioning Contractors of America (ACCA). It provides key information about load calculations that were the performed. An updated form was released in 2024.

This form can be generated and prepopulated from the common software programs that are used to perform HVAC load calculations in accordance with ACCA Manual J.

This guide will cover best practices for reviewing the information on this form for accuracy.

Contractor			Applicable Attachments Yes No Manual J1 Form and Worksheet A: Yes No OEM performance data (heating, cooling, blower): Yes No Duct distribution sketch Yes No			
Building Plan #			IRC Table R30	1.2 (climatic & geo	graphic design criteria) Y	es 🗌 No
Home Address (Street or Lot #, B	lock, Subdivisi	on)				
HVACLOAD CALCULATION					(RC M1401.3)
Manual J Design Criteria and	Loads					
Location	- 72	Summer Design Co	onditions	Man	ual J Loads	
Elevation	ft	Outdoor Cooling T	emp	°F Tota	Heat Loss	Btu
Altitude Correction Factor	ACF	Indoor Cooling Ter	mp	°F		
Latitude	° N	Cooling Temp Diff		°F Sens	ible Heat Gain	Btu
5	26	Indoor Summer De	esign RH	% Late	nt Heat Gain	Btu
Winter Design Conditions		Coincident Wet Bu	Ib Temp	°F Tota	l Heat Gain	Btu
Outdoor Winter Temp	°F					
Indoor Winter Temp	°F					
Heating Temp Diff	*F					
	Th	e heat loss / gain wa	as calculated in a	accordance wi	th ACCA Manual J?	
HVAC EQUIPMENT SELECTION	NC				(RC M1401.3)
Heating Equipment Furnace Boiler Single Stage Multi-Stage	Electric	Heat	Cooling Equip	ner 🗌 Hea eothermal Open I	t Pump .oop 🗌 Geothermal C	losed Loop
			Single Speed	Multi-Stag	e 🔲 Variable Spee	d
Model			Model			
Output Btu	Sizing Value	Btu	Sensible	Btu	Sizing Value	Btu
Supplemental Btu	Size Limit	%	Latent	Btu	Size Limit	%
Heat	Load: Capacit	v %	Total	Btu	Load: Capacity	%
Size Factor is within Manual S S	iize Limit? 🔲	Y 🔲 N	Size Factor is w	vithin Manual	S Size Limit? 🗌	Y 🗌 N
HVAC DUCT DISTRIBUTION	DESIGN				()	RC M1601.1)
Design Airflow	Cfm	Longest Supply Duct		Ft Duct M	laterials Used	
External Static Pressure (ESP)	INC	Longest Return Duct	· · · · · · · · · · · · · · · · · · ·	Ft Trunk Du	ict: 🗌 Duct Board	Sheet metal
Component Pressure Loss (CPL)	inte inte	Total Effective Lengt	h (TEL)	r. Flex	Lined Sheet meta	I Other
Available Static Pressure (ACD)	NVC	Fulstion Date		Branch E	ouct: Duct Board	Sheet metal
Available Static Pressure (ASP)	iwc	Friction Rate		Flex	Lined Sheet meta	
ESP - CPL = ASP		(ASP x 100) / TEL = Fricti	on Kate			
			1	Ducts are sized	per Manual D?	

HVAC Load Calculation – Design Conditions

Tips for Enforcing the 2021 Virginia Code

Winter Design Conditions

Outdoor Winter Temp	°F
Indoor Winter Temp	°F
Heating Temp Diff	°F

Summer Design Conditions

Outdoor Cooling Temp	°F
Indoor Cooling Temp	°F
Cooling Temp Diff	°F
Indoor Summer Design RH	%
Coincident Wet Bulb Temp	°F

New in the 2018 Virginia Residential Code was the addition of the Manual J Design Criteria table to Table R301.2(1).

Each jurisdiction should provide the design criteria that all contractors should use in their Manual J calculations.

Reviewers can then verify that their jurisdiction's design criteria were used in the Manual J.

			MANUAL	J DESIGN CRITERIA ⁿ		
Elevation	Altitude correction factor ^e	Coincident wet bulb	Indoor winter design relative humidity	Indoor winter design dry-bulb temperature	Outdoor winter design dry-bulb temperature	Heating temperature difference
-	-	-		—	-	-
Latitude	Daily range	Summer design grains	Indoor summer design relative humidity	Indoor summer design dry-bulb temperature	Outdoor summer design dry-bulb temperature	Cooling temperature difference
-	-		-		—	-

HVAC Load Calculation – Design Conditions

Tips for Enforcing the 2021 Virginia Code

Manual J Loads

Total Heat Loss	Btu
Sensible Heat Gain	Btu
Latent Heat Gain	Btu
Total Heat Gain	Btu

Total Heat Loss describes the amount of heat that will be lost from the building during the coldest hours of the winter. This heat loss needs to be made up by a heating source. The combined capacity of the heating equipment and any supplemental heat sources should meet or exceed this value.

Cooling is described by **Sensible Gain** and **Latent Gain**, as well as **Total Heat Gain**, which is the sum of the Sensible and Latent loads. Sensible gain is the heat gained by the building in the summer. Latent gain is the moisture gain.

Contact Viridiant with any questions or comments via: admin@viridiant.org or (804) 225-9843

Success with the 2021 Virginia Energy Conservation Code

HVAC INSTALLATION

TECH TIPS: *HVAC Installation*

 Seal all duct terminations to adjacent drywall and/or subfloor. Seal all HVAC penetrations in the building envelope with foam, caulk, or mastic. Use fire-rated sealants where required. (R402.4.1.1 Installation and elsewhere)

TECH TIPS: *HVAC Installation*

2. Seal all HVAC components at all joints, seams, and corners. (R403.3.4 Sealing)

 Mechanically fasten all metal duct work with screws. For flexible duct, attach the inner liner with plastic straps and tighten with a manufacturer-approved tool. (M1601.4 Installation)

5.

TECH TIPS: *HVAC Installation*

 Insulate all ducts outside of conditioned space to at least R-8 if duct is 3 inches or more in diameter; R-6 for ducts less than 3 inches in diameter. (R403.3.1 Insulation)

Do not compress insulated flexible ducts more than the thickness of the insulation. (Manufacturer's instructions)

INSULATED BOOT

TECH TIPS: *HVAC Installation*

6. Support flexible ducts (including those for ventilation) at least every 4 feet. Do not bend more than 90 degrees. (Manufacturer's instructions)

TECH TIPS: *HVAC Installation*

 Install outside air ventilation intakes at least 10 feet from any exhaust vent or stack. (M1504.3 Exhaust openings)

8. Coordinate bath fan exhaust duct direction with electrical contractor (or other fan installer) to ensure ductwork is as short and straight as possible.

X WRONG LOCATION

RIGHT LOCATION

TECH TIPS: *HVAC Installation*

9. Terminate exhaust ventilation duct work to the outside and install a screen over the termination.

For heat pumps, install a heat strip outdoor temperature
 lockout that prevents supplemental heat operation when the heat pump compressor can meet the heating load. Set it to an appropriate balance point based on local climate. (R403.1.2 Heat pump supplementary heat)

TECH TIPS: *HVAC Installation*

Best practices for air-tight ductwork: Mastic

All duct leakage penalizes comfort, efficiency, durability, and moisture management.

Virginia code first established a numerical limit to duct leakage with the 2009 edition and began requiring testing for heating/cooling ductwork outside of the building envelope with the 2015 edition. With the 2021 edition, the leakage limit is 4% if the ducts are outside of conditioned space, 8% if within.

Sealing ducts with bucket mastic and fabric mesh is widely considered the most reliable and durable method of minimizing duct leakage.

MASTIC AIR HANDLER

USE BUCKET MASTIC

TECH TIPS: *HVAC Installation*

Best practices for air-tight ductwork: Mastic

MASTIC PLENUM

MASTIC COLLAR

TECH TIPS: *HVAC Installation*

Best practices for air-tight ductwork: Mastic

TECH TIPS: *HVAC Installation*

Best practices for air-tight ductwork: Mastic

SEAL TO SUBFLOOR

SEAL TO DRYWALL

This page left intentionally blank.